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Abstract : Some typical kinetic energy integrals which arise in the application of 

extended Hylleraas-configuration interaction (E-Hy-CI) function in the framework of 

Rayleigh-Ritz method of variation, have been evaluated analytically for two-electron 

atomic systems. Closed-form expressions for the corresponding integrals which occur in 

the application of Hylleraas-CI functions, have been derived as special cases. 

1. Introduction 

For highly precise computation of electronic structure in multielectron atoms 

employing nonrelativistic quantum mechanics in the framework of Rayleigh-Ritz 

variational procedure, one needs to take into account the correlation between 

various electrons in the atom. There are basically two methods of calculation 

which include these electron-electron correlations, namely, (i) Hylleraas (Hy) 

method [1], and (ii) configuration-interaction (CI) method. Various Hy and CI 

studies have been reported in a review article by Silverman and Brigman [2]. It is 

known that CI method is plagued with the weakness of extremely slow 

convergence. Though Hy method is regarded as the most powerful method 

among the existing theoretical approaches to produce results of high accuracy [3], 

one faces great computational difficulty when it is applied for calculations for 

atoms with a large number of electrons (N>4). 

Subsequently, an alternative method, known as Hylleraas-CI (Hy-CI) 

method, was systematically developed by Sims and Hagstrom [4] in early 

seventies by hybridization of Hy and CI methods. This method has been widely 

applied successfully over the last few decades for calculations even for atoms 
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with a large number of electrons. For knowledge about the progressive 

development of Hy-CI method and its applications, the reader is advised to go 

through the representative papers for potential energy calculation [5] and for 

kinetic energy calculation [6], and references therein. 

It is expected that still quicker convergence will be achieved with smaller 

expansion lengths in the wave function expansion with the involvement of 

exponential correlation in Hy and Hy-CI methods. Accordingly, Hy-CI method 

has been extended further by including exponential correlation, and identified as 

Extended Hy-CI (E-Hy-CI) method [7]. There are few other recent reports in the 

literature wherein overlap and potential energy integrals involving exponential 

correlation with ‘unlinked’ rij’s, and spherically symmetric atomic s Slater-type 

orbitals (STO’s) have been evaluated in closed-form [8-11]. Also such integrals 

involving exponential correlation and nonspherically symmetric atomic STO’s 

have already been evaluated analytically [12]. 

Very  recently, Harris, in a series of papers [13-15], has outlined a method for 

evaluating kinetic energy matrix elements for Hy-CI and E-Hy-CI functions 

analytically making use of properties of vector spherical harmonics. The method 

of evaluation is rather simpler compared to that used in [6,16,17]. 

In this paper a basic kinetic energy integral, which arises in the application of 

E-Hy-CI method, and denoted as K
EHCI

, is analytically evaluated for a two-

electron atom. Closed-form expressions for several other kinetic energy integrals 

are obtained from the expression for K
EHCI

 by employing the method of 

parametric differentiation and taking certain limits as per requirement. 

The plan of this paper is as follows. In section 2, all the integrals to be 

evaluated are clearly defined. In section 3, first the basic kinetic energy integral 

K
EHCI

 is reduced to a simplified form to express it easily in terms of 

overlap/potential energy integrals. Then all the other kinetic energy integrals 

corresponding to E-Hy-CI method are reduced to simplified forms by parametric 

differentiations of K
EHCI

. Closed-form expression for the basic integral K
EHCI

 is 

obtained in section 4, and then other kinetic energy integrals which arise in E-Hy-

CI method are analytically evaluated. In section 5, simplified integrable 

expressions for the corresponding kinetic energy integrals which arise in Hy-CI 

method are obtained as special cases from those integrals of E-Hy-CI method by 

taking certain limits as required, and then these integrals are also easily evaluated 
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analytically. Further, one kinetic energy integral arising in CI method is also 

analytically evaluated. In the last section, some concluding remarks are given. 

2. Definition of various two-electron atomic integrals 

Let 1r  and 2r  be the position vectors of the two electrons with respect to the 

nucleus in the infinite nuclear mass approximation. Obviously, 12 1 2r r r  is 

the distance between the two electrons. With spherical polar coordinates, one can 

write r as ,( , ).r r   Thus the following set of unnormalised atomic STO’s is 

taken as the orbital basis: 

1
0( ) ( ), ,a ja a

a

rn m

a j l aj r e Y j





         (1) 

where
m

lY  is an orthonormal spherical harmonic with its arguments, here denoted 

as j, being the angular coordinates of ,jr and the subscript ‘a’ signifies a 

particular STO. In the Condon and Shortley phase convention, 
m

lY
 
is defined in 

[4,13], where l and m quantum numbers give the order and degree of the 

spherical harmonic, with 1 0 ,n l  
 
n being the radial quantum number. 

2.1 Overlap / potential energy integrals 

The most general type of overlap/potential energy integrals which arise in 

calculations with E-Hy-CI  functions for a two-electron atomic system are of the 

form 

(1) (2) (1) (2) ,EHCI

a b d e
I R   

        
(2)   

where R is an operator given by 

 12

12 , 1 , 0.
r

R r e
  

             (3) 

It is to be noted that if 0 and 1   simultaneously, one gets integrals 

corresponding to Hy-CI functions without involving exponential correlation. If 

simultaneously 0 and 0,   then the integrals corresponding to CI function 

are obtained as special cases. 

2.2 Kinetic energy with CI functions 
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If only CI method is considered, kinetic energy integrals are defined by 

21
12

(2)(1) (1) (2) .CI
a b d eK      

       
(4) 

2.3 Kinetic energy integrals with Hy-CI functions 

The following types of kinetic energy integrals arise while employing the 

Hy-CI method: 

21
1 12 12

(1) (2) (1) (2) ,HCI
a b d eK r             (5) 

21
2 1 122

(1) (2) (1) (2) ,HCI
a b d eK r            (6) 

21
3 12 1 122

(1) (2) (1) (2) .HCI
a b d eK r r            (7) 

It is to be mentioned here that, since the kinetic energy operator is Hermitian, 

2
HCIK can also be written as 

*
21

2 12 12
(1) (2) (1) (2) ,HCI

d e a bK r            (8) 

where the superscript symbol ‘*’ stands for the complex conjugate of the integral. 

2.4 Kinetic energy integrals in E-Hy-CI method 

 For doing calculations employing E-Hy-CI method, the following different 

types of kinetic energy integrals are to be evaluated. 

12 1221
12

( , ) (1) (2) (1) (2) ,
wr w rEHCI

a b d eK w w e e   
        (9) 

12 1221
1 12 12

( , ) (1) (2) (1) (2) ,
wr w rEHCI

a b d eK w w r e e   
            (10) 

12 1221
2 1 122

( , ) (1) (2) (1) (2) ,
wr w rEHCI

a b d eK w w e r e   
            (11) 

12 1221
3 12 1 122

( , ) (1) (2) (1) (2) .
wr w rEHCI

a b d eK w w r e r e   
           (12) 
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Here w  and w are exponential parameters, which may or may not be equal 

depending on the two-electron sates. Also , 0 .w w  

3. Simplification of the integrals 

By employing Kolos-Roothan transformation [18], the right hand side 

expression in Eq. (9) is simplified to obtain the following easily integrable 

expression for the integral ( , ) :EHCIK w w  

12( )*
2 1

1
( , ) (2) (2)

2

w w rEHCI
b eK w w d r d r e 

      

                         
 * 2 *

1(1) (1) (1) (1)a d d a

w
ww

w w
   


   

 

                  
 * 2

1(1) (1) .a d

w

w w
 


              

(13) 

Looking at the right hand side expressions in Eqs. (9-12), it is clearly 

observed that Eqs. (10-12) can be generated from Eq.(9) by parametric 

differentiation with respect to w
 
or w or both as per requirement. Accordingly, 

easily integrable simplified expressions for integrals in Eqs. (10-12) can be 

obtained from Eq. (13) by parametric differentiation. Thus 

    1 ( , ) ( , )EHCI EHCIK w w K w w
w

 
   

 
 

                     
12( )*

2 1

1
(2) (2)

2

w w r
b ed r d r e 

 
    

       

* 2 *12
12 12

( 1) (1) (1) (1) (1)
( )

a d d a

w r w
w wr

w w w w
   

   
      

    
 

   
* 212

12
(1) (1) ,

( )
a d

wrw

w ww w
 

 
    

    
               (14) 
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    2 ( , ) ( , )EHCI EHCIK w w K w w
w

 
    

 

                     
12( )*

2 1

1
(2) (2)

2

w w r
b ed r d r e 

 
    

       

* 2 *12
12 12

( 1) (1) (1) (1) (1)
( )

a d d a

w rw
w w r

w ww w
   

  
      

   
 

    
* 212

12
(1) (1) .

( )
a d

wrw

w ww w
 

 
    

    
                 (15) 

It is easy to observe that the integrable expression for 3
HCIK can be obtained in 

either of the following two ways : 

3 2( , ) ( , ) ( , ),EHCI EHCI EHCIK w w K w w K w w
w w w

      
                

      (16) 

3 1( , ) ( , ) ( , ).EHCI EHCI EHCIK w w K w w K w w
w w w

      
                 

    (17) 

Performing the differentiations as per Eqs. (16) and (17), the same expression is 

obtained for 3 ,EHCIK as expected. Thus 

  
12( )*

3 2 1

1
( , ) (2) (2)

2

w w rEHCI
b eK w w d r d r e 

      

                           
 2 *

12 121 ( ) (1) (1)a dw w r ww r       
  

                           

2 * 2
12 12 13 2

(1) (1)
( ) ( )

a d

w w w w w
r r

w ww w w w
 

   
    

    
 

                                          

2 2 *
12 12 13 2

(1) (1) .
( ) ( )

d a

w w w w w
r r

w ww w w w
 

    
     

      
   

(18)
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4. Analytic evaluation of integrals in E-Hy-CI method 

       Expressing
2  in spherical polar coordinates, it is straightforward to derive the 

following equations [13] : 

   2
2 * *
1 2

11

11
(1) (1),

2 22

a a a a a a a
a a

l n l n n

rr

 
 

   
     

 
           (19) 

   2
2
1 2

11

11
(1) (1) .

2 22

d d d d d d d
d d

l n l n n

rr

 
 

   
     

 
        (20) 

 

Inserting Eqs. (19) and (20) in Eqs. (13-15) and (18), each of the integrals 

1 2, ,EHCI EHCI EHCIK K K and 3
EHCIK can be expressed as a combination of several 

overlap/potential energy integrals involving exponential correlation as per Eq. (2) 

and evaluated analytically. Thus from Eq. (13) 

2 21
( , )

2

EHCI
a d

w w
K w w ww S

w w w w
 

 
       

 

       2
1

1
1 1 /

2
a a a a d d d d

w w
l n l n l n l n S r

w w w w

 
           

 

1/ ,a a d d

w w
n n S r

w w w w
 

 
     

             (21) 

where   

12( )
,

w w r
S e

 
                    (22) 

and the symbol ,T in general, stands for the expression given by 

  (1) (2) (1) (2) .a b d eT T                (23) 
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Similarly, from Eq. (14), the following expression for 1 ( , )EHCIK w w
 
is obtained: 

2 2
1 12

1
( , )

2

EHCI
a d

w w
K w w ww S r

w w w w
 

 
       

 

 2 2

2

1

2 ( )
d a

w
w S

w w
 

 
    

 
 

  2
12

1
( ) ( 1) ( )( 1) /

2 ( )
a a a a d d d d

w
l n l n l n l n S r

w w


       


 

 12
( ) /

( )
a a d d

w
n n S r

w w
 


 


 

2
12 1

1
( )( 1) ( )( 1) /

2
a a a a d d d d

w w
l n l n l n l n S r r

w w w w

 
           

 

12 1/ ,a a d d

w w
n n S r r

w w w w
 

 
     

             (24) 

where  S is given by Eq. (22). 

 Starting with Eq.(15) and proceeding in the same manner, one can obtain 

2 2
2 12

1
( , )

2

EHCI
a d

w w
K w w ww S r

w w w w
 

 
       

 

 2 2

2

1

2 ( )
a d

w
w S

w w
 

 
   

 
 

  2
12

1
( ) ( 1) ( )( 1) /

2 ( )
d d d d a a a a

w
l n l n l n l n S r

w w


       


 

 12
( ) /

( )
d d a a

w
n n S r

w w
  


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2
12 1

1
( )( 1) ( )( 1) /

2
a a a a d d d d

w w
l n l n l n l n S r r

w w w w

 
           

 

12 1/ .a a d d

w w
n n S r r

w w w w
 

 
     

             (25) 

 

Expression in Eq. (18) is further simplified similarly to get 

2 2
3 3

1
( , ) 1 ( )

2 ( )

EHCI
d a

w w
K w w S

w w
 

  
    

 
 

 2 2
122

1
( )

2 ( )
d a

w w
w w S r

w w
 

  
     

   

2 2 2
12

1

2
a d

w w
ww S r

w w w w
 

 
        

 

  2
13

1
( ) ( 1) ( )( 1) /

2 ( )
a a a a d d d d

w w
l n l n l n l n S r

w w

 
       

 
 

 13
( ) /

( )
a a d d

w w
n n S r

w w
 

 
 


 

       
  2

12 12

1
( )( 1) ( )( 1) /

2 ( )
a a a a d d d d

w w
l n l n l n l n S r r

w w

 
       

 
 

       12 12
( ) /

( )
a a d d

w w
n n S r r

w w
 

 
 

  

      

2 2
12 1

1
( )( 1) ( )( 1) /

2
a a a a d d d d

w w
l n l n l n l n S r r

w w w w

 
             

      

2
12 1/ .a a d d

w w
n n S r r

w w w w
 

 
     

             (26) 



                        B Padhy
 

 

                 Orissa Journal of Physics, Vol. 25,  No.1, February 2018 18 

5. Simplification and analytic evaluation of integrals in CI and Hy-

CI methods 

(i) The integral 
CIK as defined in Eq. (4) can be analytically evaluated 

employing Eq. (20). Thus 

2
1

1
( )( 1) (1) (2) 1/ (1) (2)

2

CI
d d d d a b d eK l n l n r          

   1(1) (2) 1/ (1) (2)d d a b d en r        

21
(1) (2) (1) (2) .

2
d a b d e                   (27) 

(ii) Inserting Eq. (20) in Eq. (5), the following closed-form expression for the 

integral 1
HCIK is obtained : 

2
1 12 1

1
( )( 1) (1) (2) / (1) (2)

2

HCI
d d d d a b d eK l n l n r r          

   12 1(1) (2) / (1) (2)d d a b d en r r        

2
12

1
(1) (2) (1) (2) ,

2
d a b d er                  (28) 

which is exactly identical with Eq.(12) in [13]. 

(iii) The integral 2
HCIK as defined in Eq. (6) can be analytically evaluated via Eq. 

(8), making use of Eq. (19). Thus 

2
2 12 1

1
( )( 1) (1) (2) / (1) (2)

2

HCI
a a a a a b d eK l n l n r r          

   12 1(1) (2) / (1) (2)a a a b d en r r        

2
12

1
(1) (2) (1) (2) .

2
a a b d er                          (29) 
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It is observed that the right hand side expressions in Eqs. (28) and (29) are not 

identical, in general. Thus the kinetic energy integrals defined in Eqs. (5) and (6) 

are not identical, in general. 

(iv) To evaluate the integral 3
HCIK as defined in Eq. (7), one looks at the Eq. (12) 

which defines the integral 3 ( , ).EHCIK w w It is observed that with 

0,w w  Eq.(12) reduces to Eq. (7). Hence a simplified expression for 

3
HCIK can be obtained from that of 3

EHCIK by setting first w w  and then letting 

0w   in Eq. (18). Thus 

 
*

3 2 1

1
(2) (2)

2

HCI
b eK d r d r     

         

* 2 * 2 2 2 *
12 1 12 1

1 1
(1) (1) (1) (1) (1) (1) .

2 2
a d a d d ar r     

 
     
 

       (30) 

The case 0w w   has been discussed earlier by Kolos and Roothan [18]. Next 

inserting Eqs. (19) and (20) in Eq. (30), the following closed-form expression for 

3
HCIK is obtained : 

 3

1
(1) (2) (1) (2)

2

HCI
a b d eK        

             

1
[( )( 1) ( )( 1)]

4
a a a a d d d dl n l n l n l n         

      

2 2
12 1(1) (2) / (1) (2)a b d er r       

              

2
12 1

1
( ) (1) (2) / (1) (2)

2
a a d d a b d en n d r r       

 

     
 2 2 2

12

1
(1) (2) (1) (2) .

4
a d a b d er        

        
 (31) 

This expression in Eq. (31) can be compared with the right hand side 

expression in Eq. (27) in [13], which  has been derived for the same integral by 
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Harris in a different approach by making use of vector spherical harmonics, and 

later pointing out a minor misprint. 

 The validity of the derivation leading to Eq. (31) will be established by 

calculating the values of the expression given here and that reported by Harris 

[13]. 

6. Conclusion 

 All the kinetic energy integrals defined here for a two-electron atomic 

system have been expressed in terms of the overlap/potential energy integrals 

which can be easily evaluated analytically. Thus, closed-form expression is 

obtained for the total energy of the system. The energy of various states of such a 

system can be estimated by applying the method of variation, and choosing the 

expansion length of the wave function proposed. The numerical results can be 

compared with energy values of few states of a helium atom reported recently 

[19].  

Acknowledgements  

 The author is extremely grateful to Dr. J.S. Sims and Dr. M.B. Ruiz for 

providing periodic information as and when required throughout this work. Also,  

I am highly indebted to Prof. N. Barik for several useful discussions relating to 

this work, and to Prof. S.K. Patra for critically going through the manuscript. 

References 

[1] EA Hylleraas, Adv. Quantum Chem. 1, 1(1964) 

[2] JN Silverman and GH Brigman, Rev. Mod. Phys. 39, 228 (1967) 

[3] C Li, L Wang and Z-C Yan, Phys. Rev. A.88, 052513 (2013) 

[4] JS Sims and SA Hagstrom, J. Chem. Phys. 55, 4699 (1971) 

[5] JS Sims and SA Hagstrom, J. Phys. B: At.Mol. Opt. Phys. 48, 175003 (2015) 

[6] MB Ruiz, J. Math. Chem. 54, 1083 (2016) 

[7] C Wang, P Mei, Y Kurokawa, H Nakashima and H Nakatsuji, Phys. Rev.A 

85, 042512 (2012) 

[8] B Padhy, Asian J. Spectrosc. (Special Issue), pp. 157-162 (2012); arXiv: 

1609.00269 

[9] B Padhy, Orissa J. Phys. 20(1), 11 (2013) ; arXiv:1609.00112 



                Kinetic energy matrix elements for a two-electron …. 

                 Orissa Journal of Physics,  Vol. 25,  No.1,  February 2018 21 

[10] FW King, J. Phys. B: At.Mol. Opt. Phys. 49, 105001 (2016) 

[11] B Padhy, arXiv: 1701.05701 

[12] B Padhy (to be published) 

[13] FE Harris, J. Chem. Phys. 144, 204110 (2016) ;  erratum 145, 129901 (2016)  

[14] FE Harris, Mol. Phys. 115(17-18), 2048 (2017) 

[15] FE Harris, Adv. Quantum Chem. (2017) (in press). 

[16] JS Sims and SA Hagstrom, J. Phys. B: At.Mol. Opt. Phys. 40, 1575 (2007) 

[17] MB Ruiz, J. Math. Chem. 49, 2457 (2011) 

[18] W Kolos and CCJ Roothan, Rev. Mod. Phys. 32, 219 (1960) 

[19] DT Aznabayev, AK Bekbaev, IS Ishmukhamedov and VI Korobov, Phys. 

Particles Nucl. Letters 12, 689 (2015) 


